Statistics

Summer 2023

Lecture 5

Feb 19-8:47 AM

Class QZ 5
Consider the Sample below $\sqrt{ }=13.3$ $\begin{array}{llllll}12 & 18 & 15 & 15 & 10 & \checkmark S=4.084\end{array}$ 3 tend
$\begin{array}{lllll}10 & 8 & 20 & 16 & 9\end{array}$
use Your TI call to find
$\left.\checkmark s^{2}=\left[\frac{1501}{90}\right]\right\}_{\text {fraction }}$
$n=10$ clear all lists STATBCALC

VARS 5: Statistics $3: 5 x$ (x^{2} Math 1 Calculate

Jun 20-7:39 AM

Jun 20-8:05 AM

How to find $a \dot{\varepsilon} . b$ Using formula:

$$
\begin{aligned}
& a=\frac{\sum y \sum x^{2}-\sum x \sum x y}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& n=5, \sum x=13, \sum x^{2}=43, \sum y=42, \sum y^{2}=358, \sum x y=112 \\
& a=\frac{42.43-13.112}{5.43-13^{2}}=\frac{350}{46}=7.609 \approx 7.6 \\
& b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{5.112-13.42}{5.43-13^{2}}=\frac{14}{46} \\
& \\
& =.304 \approx .3
\end{aligned}
$$

$$
\text { Given } \begin{aligned}
& n=10, \sum x=64, \sum x^{2}=464, \\
& \sum y=782, \sum y^{2}=62632, \sum x y=5277
\end{aligned}
$$

find ign of the regression line

$$
\begin{gathered}
\hat{y}=a+b x \\
\begin{aligned}
& a=\frac{\sum y \sum x^{2}-\sum x \sum x y}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{782.464-64.5277}{10.464-64^{2}}=\frac{25120}{544} \\
& \approx \frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{10.5277-64 \cdot 762}{10.464-64^{2}}=\frac{2722}{544} \\
& \approx 5 \\
& \approx 5 \approx a+b x \\
& \hat{y} \approx 46+5 x
\end{aligned}
\end{gathered}
$$

Regression line $\hat{y}=a+b x$
Linear Correlation Coefficient r

$$
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}}
$$

x	y
2	5
3	8
4	10
5	10

$$
x \rightarrow L 1, y \rightarrow L 2
$$

use 2 -Var stats

$$
\begin{array}{cl}
\sum x=14 & \sum y=33 \\
\sum x^{2}=54 & \sum y^{2}=289 \\
n=4 & \sum x y=124
\end{array}
$$

$r=\frac{n \sum x y-\Sigma x \sum y}{\sqrt{n \sum x^{2}-(\Sigma x)^{2}} \sqrt{n \sum y^{2}-(\Sigma y)^{2}}}=\frac{4 \cdot 124-14 \cdot 33}{\sqrt{4.54-14^{2}} \sqrt{4 \cdot 289-33^{2}}}=\frac{34}{\sqrt{20} \sqrt{67}}$

$$
=\frac{34}{\sqrt{1340}}=.929 \quad a=2.3 \quad=\hat{y}=2.3+1.7 x
$$

$\left.\begin{gathered}\text { Now use } \operatorname{Lin\operatorname {Reg}(a+bx)} \\ \text { with LIE.Le to find }\end{gathered} \right\rvert\, \begin{aligned} & b=1.7 \\ & r^{2} \approx 86 \% \\ & r=.929\end{aligned}$

Linear Correlation Coefficient r
It is a numerical value that measures the strength of linear correlation between all ondered-Pairs (x, y).

$$
-1 \leq r \leq 1
$$

when r is close to 0
\Rightarrow Linear Correlation is not Significant.
when
\Rightarrow Linear Correlation is Significant.
what is r^{2} ? It is the coff. of determination.
Always express as whole $\%$
r^{2} tells us what 1. of Y - values are explained by x-values.
From Last example $\rightarrow r^{2} \approx 86 /$
86\%. of Y-values are explained by x-values. 14/. were unexplained.

Jun 20-9:03 AM

Suppose $r=.959$ for correlation between $\overbrace{\text { Study time }}^{x}$ and $\overbrace{\text { exam results. }}^{y}$

1) Since r is close to 1 ,

Linear correlation is Significant.
2) find $r^{2} \mathrm{in} /$. $r^{2}=(.959)^{2} \approx 92 \%$

So 92% of exam Scores are explained by study time. 8% are unexplained.

I randomly selected 8 people, chart below is walking time $\dot{\varepsilon}$. Blood Sugar level the next day.

Time	BS level
30	115
35	110
40	100
20	130
20	125
10	145
25	130
40	105
$\hat{y} \approx 157.8-1.4 x$ α $\&$	
+85	

are explained by walking time 5\%. unexplained

Given $\quad \hat{y}=55.6+2.8 x \quad \dot{\varepsilon}, \quad \bar{y}=71.5$
Predict y when $x=5.5$.

1) Assume r is significant

$$
\begin{aligned}
y & =55.6+2.8(5.5) \\
& =71
\end{aligned}
$$

2) Assume r is not significant. ©
use $\bar{y} \quad y=71.5$

Is close fo 1 or 0 ? We test this much later in this class.

Jun 20-9:29 AM

Suppose $\quad \hat{y}=73.5-4.5 x \quad \dot{z} \quad \bar{y}=58.5$
Predict y when $x=4.8$.

1) Assume r is significant

$$
y \approx 73.5-4.5(4.8) \approx 51.9
$$

2) Assume $\underbrace{r \text { is not significant }}_{\text {use } \bar{y}}$

$$
y=58.5
$$

Predict QZ Score for Someone who studied 4.5 hiss.

1) Assume \underbrace{r} is Significant.

$$
y \approx 11+2(4.5)=20
$$

2) Assume $\underbrace{r y \text { is not Significant. }}_{\text {use } \bar{y}}$

$$
\bar{y}=\frac{\sum y}{n}
$$

VARS 5: Statistics 5: \bar{y} Enter

Intro. To Probabilities:
$E \rightarrow$ Desired event (outcome)
$P(E) \rightarrow$ Prob. that E happens

$$
P(E)=\frac{\text { Total \# of all desired outcome }}{\text { Total \# of all outcomes }}
$$

Ex: There are 20 students, 12 Females $\Sigma_{1} 8$ Males
If we randomly Select one student,
find the prob. of Selecting one female.

$$
P(\text { Female })=\frac{12}{20}=\cdot 6=\frac{3}{5}
$$

Jun 20-10:32 AM

In a standard deck of playing cards, There are 52 Cards, 26 Red, 12 face Cards, and 4 aces
If we randomly Select one card,

1) $P(\operatorname{Red})=\frac{26}{52}=\frac{1}{2}=.5$
2) $P($ face $)=\frac{12}{52}=.231=\frac{3}{13}$
3) $P($ ace $)=\frac{4}{52}=077=\frac{1}{13}$

Acceptable Form of answer:

1) Reduced fraction
2) Round to 3 -decimal places
3) Scientific Notation

I surveyed 80 people I asked them if they were in favor of abortion law.

	Yes	No	Total
Males	25	5	30
Females	10	40	50
Total	35	45	80

If we randomly Select one of these people,

1) $P($ male $)=\frac{30}{80}=.375$
2) $P($ Yes $)=\frac{35}{80}=\frac{7}{16}$
3) $P\left(\right.$ Male and $\left.Y_{e s}\right)=\frac{25}{80}$
4) P(Male or Mes)

$$
=\frac{5}{16}=.313=\frac{40}{80}=\frac{1}{2}=.5
$$

A 20-sided fair object has numbers 1 to 20 on the sides. $1,2,3,4, \ldots, 20$.
If we roll this object, find the prob. of getting

1) 4

2) at most 4 $1,2,3,4$
$\frac{4}{20}=\frac{1}{5}=.2$
3) at most 4 or at least 15

$$
\begin{gathered}
\text { at most } 4 \\
1,2,3,4
\end{gathered} \quad 15,16,17,18,19,20 \quad \frac{10}{20}=5
$$

5) At most 4 and at least $15 \frac{0}{20}$
Impossible
class QZ 6
Use the chart below

x	y
3	2
5	5
6	4
6	3
8	2

find

1) $a=3.45 \quad$ Round to
2) $b=-.05\}$ e-decimals
3) $\left.r^{2}=0 \% \quad\right\}$ whole $\%$
4) $r=-.063\}$ 3-decimals

Jun 20-11:03 AM

